Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum
نویسندگان
چکیده
Biological species may remain distinct because of genetic isolation or ecological adaptation, but these two aspects do not always coincide. To establish the nature of the species boundary within a local bacterial population, we characterized a sympatric population of the bacterium Rhizobium leguminosarum by genomic sequencing of 72 isolates. Although all strains have 16S rRNA typical of R. leguminosarum, they fall into five genospecies by the criterion of average nucleotide identity (ANI). Many genes, on plasmids as well as the chromosome, support this division: recombination of core genes has been largely within genospecies. Nevertheless, variation in ecological properties, including symbiotic host range and carbon-source utilization, cuts across these genospecies, so that none of these phenotypes is diagnostic of genospecies. This phenotypic variation is conferred by mobile genes. The genospecies meet the Mayr criteria for biological species in respect of their core genes, but do not correspond to coherent ecological groups, so periodic selection may not be effective in purging variation within them. The population structure is incompatible with traditional 'polyphasic taxonomy' that requires bacterial species to have both phylogenetic coherence and distinctive phenotypes. More generally, genomics has revealed that many bacterial species share adaptive modules by horizontal gene transfer, and we envisage a more consistent taxonomic framework that explicitly recognizes this. Significant phenotypes should be recognized as 'biovars' within species that are defined by core gene phylogeny.
منابع مشابه
Rhizobium gone native: unexpected plasmid stability of indigenous Rhizobium leguminosarum.
Lateral transfer of bacterial plasmids is thought to play an important role in microbial evolution and population dynamics. However, this assumption is based primarily on investigations of medically or agriculturally important bacterial species. To explore the role of lateral transfer in the evolution of bacterial systems not under intensive, human-mediated selection, we examined the associatio...
متن کاملSurface Properties of Wild-Type Rhizobium leguminosarum bv. trifolii Strain 24.2 and Its Derivatives with Different Extracellular Polysaccharide Content
Rhizobium leguminosarum bv. trifolii is a soil bacterium able to establish symbiosis with agriculturally important legumes, i.e., clover plants (Trifolium spp.). Cell surface properties of rhizobia play an essential role in their interaction with both biotic and abiotic surfaces. Physicochemical properties of bacterial cells are underpinned by the chemical composition of their envelope surround...
متن کاملDistribution of O-acetyl groups in the exopolysaccharide synthesized by Rhizobium leguminosarum strains is not determined by the Sym plasmid.
The patterns of O-acetylation of the exopolysaccharide (EPS) from the Sym plasmid-cured derivatives of Rhizobium leguminosarum bv. trifolii strain LPR5, R. leguminosarum bv. trifolii strain ANU843 and R. leguminosarum bv. viciae strain 248 were determined by 1H and 13C NMR spectroscopy. Beside a site indicative of the chromosomal background, these strains have one site of O-acetylation in commo...
متن کاملDraft genome of the strain RCAM1026 Rhizobium leguminosarum bv. viciae
Rhizobium leguminosarum bv. viciae RCAM1026 is a strain first isolated in 1964 from nodules of "Ramensky 77" cultivar of garden pea (Pisum sativum L.) now routinely used as a model strain in inoculation experiments on pea. Assembly with SPAdes yielded 133 contigs longer then 200 bp (N50 = 202,321, GC% = 60.84). Resulting annotated genome is 7,248,686 bp encoding 6792 genes.
متن کاملInduction of microbial genes for pathogenesis and symbiosis by chemicals from root border cells.
Reporter strains of soil-borne bacteria were used to test the hypothesis that chemicals released by root border cells can influence the expression of bacterial genes required for the establishment of plant-microbe associations. Promoters from genes known to be activated by plant factors included virE, required for Agrobacterium tumefaciens pathogenesis, and common nod genes from Rhizobium legum...
متن کامل